

NSM 400

The NSM 400 is designed to provide the best possible data acquisition and transmission in mobile land applications. The two-axis gimbal ensures a stabilized field of view and high-resolution images by compensating the roll and pitch of vehicles up to $\leq \pm 20.0^{\circ}$ in the roll and pitch axis. The gimbal is suitable for both commercial applications and demanding military missions.

TECHNICAL SPECIFICATIONS

Pitch at 0° Roll:	≤± 20.0°
Roll at 0° Pitch:	≤± 20.0°
Yaw (Drift):	no drift correction
	≤0.4° rms
	100 kg 70 kg 55 kg
	220.5 lbs 154.3 lbs 121.3 lbs
	125 Nm
	250 Nm
	33 kg 72.5 lbs
	290 mm 11.4 in
	Ø486 mm Ø19.1 in
	IP 67
	-30 °C +55 °C -22 °F +131 °F
	-55 °C +85 °C -67 °F +185 °F
	Ethernet RS422 RS232
	28 VDC (2430 VDC)
9	90 W
	450 W
	IACS E10, DNV GL, 2006/42/EC Machinery
	Roll at 0° Pitch: Yaw (Drift):

THE REPORT OF A DIMESTIC PROVIDENT

Preliminary data, subject to change

¹ Vehicle motion <± 18° / 15°/s / 40°/s2 - small periodical lateral accelerations (≤ 0.5 g) acceptable, constant lateral accelerations for more than 1 minute reduce the performance of the Mount (can be compensated by external GPS input)</p>

² Possible payload weight dependent acceleration and CoG of payload / shown data is based on 0.9 g lateral acceleration

and a CoG payload offset to the Mount surface of: 250 mm (9.8 in) | 400 mm (15.7 in) | 500 mm (19.7 in)

³ Maximum duration 90 s at 55 °C surrounding temperature | longer if temperature inside the unit is < 55 °C</p>
⁴ Horizontal payload CoG offsets are not considered; without wind force and other possible external forces

NSM 400 NIMBLE STABILIZATION MOUNT

MEDIUM-SIZED GIMBAL for precie sensor stabilization on

for precie sensor stabilization or ground vehicles

IP class 67 for high performance stabilization

in rough maritime environments

 \swarrow

COMPACT HYDRAULIC SYSTEM for sensor stabilization up to 100 kg (220.5 lbs) at only 33 kg self-weight

 \leq

ETHERNET INTERFACE

for integration in ship's infrastructure

Field of Application

Application Examples

Antenna System

Pan/Tilt Camera

SCAN ME.

Scan this QR-Code with your phone to get further information about the NSM 400 - Land.